
SVM-based Real-Time Hardware Trojan Detection
for Many-Core Platform

Amey Kulkarni1, Youngok Pino2, and Tinoosh Mohsenin1

1Department of Computer Science & Electrical Engineering , University of Maryland, Baltimore County
2Information Sciences Institute , University of Southern California

Abstract—Hardware Trojans inserted during design or fabri-
cation time by untrustworthy design house or foundry possesses
important security concerns. These Trojans lead to un-desired
change in functionality of the design and provide easy access to
sensitive information. Trojans attacks or malicious activities are
triggered based on very rare conditions, which can evade test-
time Trojan detection but can arise during long hours of field
operation. In this paper we propose a run-time Trojan detection
architecture for a custom many-core based on Machine Learning
technique. We exploit Support Vector Machine (SVM) supervised
machine learning algorithms. The Data-set is generated based on
many-core router behavior under normal and Trojan triggered
settings. The paper targets different communication attacks trig-
gered by Hardware Trojans, namely core address spoofing, traffic
diversion, route looping attack. Support Vector Machine (SVM)
algorithm has detection accuracy in the range of 94% to 97%. We
implemented a framework for many-core architecture with SVM
kernel while triggering Trojans based on two different conditions.
To demonstrate the performance of proposed security framework,
we implement a bio-medical seizure detection application as a
case study. The algorithm is mapped on 64 processing cores and
it takes 2.1µS to execute whereas with the proposed security
framework it requires 4.8µS execution time. The Distributed
Attack Detection Framework is implemented with each attack
detection module having 2% area overhead.

Index Terms—Hardware Security, Trojan Detection, Many-
Core Design, Machine Learning, Support Vector Machine

I. Introduction

Increased focus on R&D and reduction in time-to-market
window in most of the semiconductor companies, a new
trend has started to rely on Third Party Intellectual Properties
(3PIP) and outsourcing fabrication process [1]. This raises
serious security concern about Hardware Trojan inclusions
in recent years. The Trojans in 3PIPs lead to malfunctioning
and can create a backdoor to leak essential information to the
attackers [2]. These type of hardware Trojans create new set
of challenges for the user and impose an urgent need for trust
validation in designs from third party vendors.

The Trojan detection can be performed at design-time,
test-time and run-time. Run-time approaches have significant
advantages over its counterparts: 1. Detecting Trojans for
entire lifetime of the IC, 2. Trojans escaped during design
and test time are detected at run-time, 3. It allows us to
deploy a Trojan-inserted-IC while avoiding Trojan-infected-
logic. Though run-time Trojan detection has several advan-
tages, implementing run-time detection has large overheads.
Trojans inserted at design or fabrication phase by untrust-

worthy third party vendors can certainly escape design and
test-time Trojan detection methods. Therefore, low overhead
run-time hardware Trojan detection is very important.

In this paper, we propose a low overhead run-time hardware
Trojan detection framework using Machine Learning (ML) al-
gorithms. ML algorithms are advantageous in several domains
and have recently gained attention in hardware community for
various applications [3]. Although practicing ML techniques
on hardware is advantageous, it faces various challenges: 1.
Relevant features extraction and its hardware implementation
feasibility 2. Required number of observations for training
data (memory requirement) 3. Hardware complexity of the
ML algorithm 4. Effective placement of ML kernel etc.

The main contribution to the research include:
• Trojan Detection analysis on four commonly used Super-

vised ML algorithms.
• Feature data set generation for many-core (with 16 and

64 processing cores) architecture, feature selection based
on correlation analysis and hardware implementation fea-
sibility.

• Hardware implementation analysis of Support Vector
Machine algorithm and its integration with custom many-
core router architecture that can target both FPGA and
ASIC.

• Fully placed and routed implementation of the proposed
security framework on Xilinx Virtex-7 FPGA.

• Adopting the proposed security framework to demon-
strate secure processing of a bio-medical seizure detection
application on many-core platform.

The rest of the paper is organized as follows: Section II
presents Trojan Insertion technique considered for the pro-
posed work. Feature extraction and its optimization is dis-
cussed in Section III. Section IV discusses Trojan detection
accuracy analysis for Supervised ML algorithms and explains
SVM Supervised ML algorithm. Section V describes our
proposed security framework for real-time Trojan detection
using SVM Supervised ML algorithm and implements seizure
detection algorithm as case study. Finally, Section VI discusses
results and analysis.

II. Trojan InsertionMethodology

In this paper, we assume that IP cores, processing cores and
memories are secured similar to Fiorin et.al. [4]. Therefore,
Trojan can trigger an attack only through communication
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TABLE I
Example Observations from “Golden Data Set” for Real-time Trojan Detection

Features Source Dest. Route Route Route Route Route Distance Class Attack
/Obs Core Core 0 1 2 3 4 Type

1 11 2 C R0_2 R1_0 R0_0 B 4 Secured -
2 11 2 C R0_2 R1_0 R0_1 B 4 Trojan Traffic

Diversion
3 11 2 C R0_2 0 0 C 2 Trojan Route

Looping
4 11 2 C R0_2 R1_0 R0_3 D 4 Trojan Core

Address
Spoofing

5 11 2 C R0_2 0 0 A 2 Trojan Core
Address
Spoofing

network on many-core platform. In this section, we discuss
Trojan Insertion methodology considered for proposed work.

The Trojan is implemented at Design-phase and activated
internally. There are two different ways Trojans can be ac-
tivated internally: Always-on and Condition-based. As the
name suggests, always-on Trojans are always active and can
include malicious activity at any-time whereas condition-based
Trojans are activated under specific conditions. In this paper,
condition-based Trojan activation is implemented on internal
logic state after particular number of core-to-core transfers or
clock cycles.

Attacks on many-core router can affect network packet
transfer rate, network/processing core availability and inter-
ruption in core communication [5]. The router (communi-
cation network) can be attacked externally through memory
architecture interface, specialized core interface or internally
by corrupting routing table to include different attacks such as
Traffic diversions, Routing loops, Core spoofing attacks. All
three attacks are also called as Denial-of-Service (DoS) attack,
where in a specific core under attack is made unavailable.
Table I shows example observation from “Golden Data Set”
for the considered attacks.

• Traffic Diversion Attack : It is a very common attack
in many-core router architecture. Under this attack, the
router selects a random core to transfer the data. This
attack affects the deadline for the other cores, which are
dependent on the attacked transfer packet.

• Routing loop attack: Under this attack, the packets are
routed back to the source core. The source core is
made unavailable to other communicating cores, thereby
causing latency in other core transfers.

• Core Spoofing Attack: This attack transfers all packets
to randomly chosen (address) destination. The attack
saturates the core and makes it unavailable for other
cores.

Change in a single bit by an attacker at the router hop (any
level) can modify the destination core address. To secure router
from above mentioned attacks, we use different features. The
feature values are formulated based on hardware functionality
to form an observation. The supervised model is trained based
on these observations to detect an attack in real-time.

III. Feature Extraction and Optimization

Collecting relevant data based on hardware behavior anal-
ysis is the first and most important step in this research.
In a good ML data-set, each feature must contribute to the
class i.e better correlation between feature and the class,
but not among the features. Relevant attribute selection will
aid both, increasing accuracy of Trojan detection and hard-
ware implementation. Removing irrelevant features will reduce
data-set thereby decreasing hardware complexity and memory
usage. Therefore, we select relevant features based on feature
correlation analysis. We consider following features for Trojan
detection:

• Source Core : Source Core Number
• Destination Core : Destination Core Number
• Packet Transfer Path : Packet transfer between the two

cores has a unique path which alters in case of Trojan.
In this paper, we experiment on a 8×8 NoC i.e many-
core architecture with 64 processing cores. It has three
levels of router hop and therefore highest number of
hops to be traveled by packet can be 5 for inter-cluster
communication.

• Distance : At each router hop, distance vector is incre-
mented by 1. For example, when core 11 is transferring
packet to core 62, distance vector is incremented at R0_2
(Distance=1), R1_0 (Distance=2), R2_0 (Distance=3),
R1_3 (Distance=4), R0_3 (Distance=5). Since there will
be six vertices (5 router hops and 1 processing core) and
five edges, highest distance is 6.

Table I gives an example of expected test records received
from router in case of Trojan / attack (Class “0”) and without
Trojan (Class “1”) when packet is transferred from core 11
to core 2. Observation 3 shows routing loop attack whereas
observation 4 and 5 show core spoofing attack.

IV. Machine Learning Algorithms

We examine commonly used Supervised ML algorithms
such as Support Vector Machine (SVM), Decision Tree (DT),
Linear Regression (LR), and K-Nearest Neighbors (KNN)
for the Trojan detection analysis for many-core architecture.
We also evaluated Un-supervised algorithms for Trojan de-
tection,which has shown detection accuracy in the range of
50% to 80% [6]. Matlab statistics toolbox and Linear Library



Fig. 1. Detection Accuracy Analysis of Supervised ML Algorithms, SVM-
Support Vector Machine, DT-Decision Tree, LR-Linear Regression, KNN-K-
Nearest Neighbor

TABLE II
Time Complexity Analysis of SupervisedML algorithms, Where n size of

training data, m size of test data and p features

Algorithm Complexity of Complexity of
Learning Model Prediction Model

K-NN - O(knp)
Decision Tree O(pn2 log(n)) O(m)

Linear Regression O(p2n) O(pm)
Support Vector Machine O(pn3) O(pm)

(LibLinear 1.94) is used for implementation and accuracy
analysis of ML algorithms. The training data set consists of
716 different observations with 8 attributes and a binary class
whereas, test data set consists of 290 observations.

A. Accuracy Analysis on Supervised Learning Algorithms

Figure 1 shows accuracy analysis on supervised algorithms.
Accuracy is calculated as number of correctly labelled ob-
servations in total labelled observations. The analysis is per-
formed for each attack separately. Decision tree has better
detection accuracy for traffic diversion attacks among all
Supervised learning algorithms. Linear regression algorithm
detects 97% of traffic diversion attacks however, it performs
worst for route looping and core address spoofing attacks
among all supervised algorithms. KNN algorithm with (K =
3) neighbors, has lowest detection accuracy for traffic diversion
attacks. Decision tree algorithm performs better than Linear
regression irrespective of types of attack. SVM performs better
than K-NN and Linear Regression algorithms. It can be noticed
that SVM has detection accuracy in range of 94% to 97%.

B. Hardware Complexity Analysis of Supervised Learning
Algorithms

In this section, we perform complexity analysis of Super-
vised learning algorithms. Classification of a test observation,
in Supervised ML algorithm involves two steps. First kernel
is to form a supervised model using training data set, whereas
second kernel involves predicting a test observation based on
trained supervised model.

Table II shows Learning and Prediction complexity of the
Supervised Algorithms. In most of the supervised algorithms
complexity of learning model is greater than the complexity

TABLE III
Hardware Complexity Analysis of SupervisedML algorithms when Trained
off-line, Where n size of training data, m size of test data and p features

Algorithm Multiplications Additions Memory
Requirement

K-NN p × n ×m (p − 1) × n ×m n × p
Decision p × n n × 2p+1 − 1 p

Tree
Linear p2 × n + p3/3 p2(n − 1) n × p

Regression −p2/2 + p/6 +(p3/3 − p/3)
Support Vector p ×m m × (p − 1) p

Machine

of prediction model. Thus to reduce hardware complexity,
we train the model offline by using “Golden Data set”. The
“Golden Data set” is created by emulating real traffic loads on
many-core hardware while randomly injecting attacks on the
routers and obtaining feature_sample for each communication,
based on the three types of attacks as discussed in Section II.
The Golden Data Set consists of 60% - Feature data without
Trojan (Class-1) and 40% - Feature data with Trojan (Class-0).
Golden Data (training) set is built to detect the three attacks
(as mentioned in Section II) efficiently.

Table III shows the hardware complexity of the super-
vised algorithms when training is performed off-line. For
K-NN algorithm, though training cannot be performed of-
fline, computation requirements are almost equal to Decision
tree algorithm. LR and SVM have same computational and
memory requirements as both algorithms give weight vectors
after training. The obtained weight vector is used to predict
the test class. Training ML algorithm offline reduces two
overheads i.e resource utilization and execution time. Based
on the complexity and detection accuracy analysis, SVM is
the best option among these algorithms for further hardware
implementations.

C. Support Vector Machine Algorithm

Support Vector Machine (SVM) is an efficient Supervised
ML algorithm which provides good generalization perfor-
mance for both classification and regression exercises. SVM
algorithm adapts training data consisting of features and its
desired class, to model and construct the weighted function
for test data prediction. It consists of two phases: “learning
phase” where SVM identifies closest data points to decision
boundary known as Support Vectors (SVs), which forms best
separation among the classes. These SVs are used to predict
the class of test record in the “prediction phase”.

Figure 2 shows the binary classification problem. The aim
of SVM is construction of decision surface (W.X -b=0) to find
maximum separation between the classes. Thus, future test
record can be predicted using equation 1.

f (x) = sign(
∑

(Wi × Xi) + b) (1)

where, W is weight vector formed by using SVs, X is test
record and b is bias.

D. Hardware Implementation of Support Vector Machine

Implementing hardware architecture for ML algorithms
faces several challenges such as pre-processing of fea-



Fig. 2. Support Vector Machine Separating Hyperplane
tures, computational model implementation, managing mem-
ory transfers etc. The SVM is trained offline i.e. the Support
Vectors are found offline and test records are predicted based
on Support Vectors on-line. In this study, SVM is trained
by using “Golden Data Set” on Matlab toolbox and SVM
Linear Library (liblinear-1.94). Since the SVM is trained
offline using “Golden Data Set”, it already knows the patterns
of communication with and without Trojan. The SVM uses
“Golden Data Set” to formulate function (in terms of weight
vector and bias), the test feature is then mapped onto function
to detect a Trojan.

We consider Source Core, Destination Core, Packet Transfer
Path (router hop), and Distance features for Trojan detection.
For 16-core many-core architecture 716 training records each
with 8 features are used, whereas for 64-core many-core
architecture 7260 training records each with 10 features are
used to build “Golden (Training) Data Set”. The weight vector
is, 8×1 for 16-core architecture whereas in case of 64-core
router it is 10×1 and each vector is 6-bit. The 6-bit Bias
is obtained from training data set. The SVM architecture
consists of three main blocks: Test Feature Extraction, SVM
Computation and Post Processing, as shown in Figure 3. These
three blocks are interdependent, and designed in pipeline to
reduce execution cycles. The input to SVM is feature_sample,
which is formed by router architecture. The 16-core router
feature_sample is 24-bit, whereas 64-core feature_sample is
30-bit. In Test feature_sample Extraction Module, the fea-
ture_sample is separated to form each feature vector. This
feature vector is then padded with zero to match with the
weight vector. The SVM Computation block consists of Dot
Product and Bias Vector Addition blocks. The predicted class
is calculated by using equation 1. Finally, Post Processing
block converts calculated predicted class to the binary class
i.e. feature data with Trojan or without Trojan.

V. Case Study: Security Framework for Seizure Detection
Algorithm onMany-Core Platform

In order to demonstrate the efficiency of the proposed
security framework, we implement a bio-medical seizure de-
tection algorithm. Approximately 1% of world’s population

Fig. 3. Architecture for Support Vector Machine Kernel

suffers from Epilepsy. Epileptic patients experience seizure
causing involuntary motion, loss of cognition etc. The di-
agnosis of epilepsy is performed based on seizure detection
which requires placement of electrode (sensing channel) on the
patient’s scalp. Therefore, seizure detection should have high
accuracy and low hardware overhead. Previously proposed
seizure detection algorithm mapping on many-core platform
targeted low-power and reduced latency detection [7]. In
this paper, we mapped Seizure detection algorithm with 16-
channels on low power many-core platform. Figure 4 shows
mapping of Seizure Detection algorithm on many-core plat-
form and it consists of three main kernels: 1. Detection Phase
2. Analysis Phase 3. Band Analysis Phase. The detection
phase is performed in time-domain by determining EEG high
frequency components and comparing their magnitude with
predetermined threshold values that are calibrated for each
patient. In analysis phase, signals are converted in frequency
domain by FFT-blocks, where we implement 128-pt FFT
decomposed in 8-pt and 16-pt FFT blocks. Data Energy sep-
aration in four frequency bands: Theta (4-7 Hz), Alpha (8-12
Hz), Beta (13-29 Hz) and Gamma (30-50 Hz) is performed in
Band Analysis phase. The seizure detection algorithm requires
61 cores, where communication instructions (60%) dominates
execution time and takes 2.1µS to execute.

A. Many-Core Test Setup

Figure 5 shows the 64-Core test setup implemented on
Xilinx Virtex-7 FPGA. The test setup consists of three im-
portant modules : 1. 64-Core Many-core Architecture, 2.
Attack Detection Module and 3. Trojan Insertion Module.
The seizure detection algorithm is mapped on 64-Core many-
core architecture. It takes 458 inter-cluster and 1088 intra-
cluster communications, where each cluster consists of four
processing cores to execute the application. For each core to
core communication, Router Packet is generated which has
data to be transferred and also address of the destination core.
feature_sample is updated at each communication hop and
it contains features discussed in Section III. At the source
core, feature_sample is updated with two features i.e. source
core, destination core, and other feature vectors are initialized
as zeros. At each router hop, feature_sample updates other
features i.e path and distance. Finally at destination router i.e



Fig. 4. Seizure Detection Algorithm Mapping on Many-Core Platform,
where R0- Router Level-0, R1-Router Level-1, and R2-Router Level-2

before the destination core, feature_sample is transferred to the
Attack Detection Module which is designed based on SVM as
discussed in Section IV-D.

We test our real-time post deployment architecture for
Trojan detection by emulating the three attacks in hardware.
We consider that all routers are malicious and the Trojan
can be triggered on routers using Trojan Insertion Module.
The Trojan insertion module is condition based and triggers
the attack after either 100 clock cycles or 8 Router Packet
transfers. Upon trigger, destination core field in Router Packet
is altered to a random number. In case of an attack, it corrupts
router data in turn corrupting the feature_sample. The Attack
Detection Module detects the attack using SVM kernel. In
case of attack detection, the Attack Detection Module outputs
Class − 0(low) and the attacked packet is dropped. However,
in case of no-attack, it sends “Destination Core Enable” signal
to the destination core to accept the packet. To reduce the
communication latency we implemented Distributed Attack
Detection Module for each four clusters of cores (i.e. for
each 16-core) and one for inter-cluster communications. The
proposed framework is scalable, Distributed Attack Detection
Framework can be implemented in case of large NoC by
placing SVM Kernel at every router level.

VI. Implementation Results

Many-Core architecture consisting of 64 processing cores
is fully placed and routed in Xilinx Virtex-7 FPGA. We im-
plement Distributed Attack Detection Framework by placing
SVM Kernel at two different router levels. Each SVM kernel
will detect intra-cluster attack separately and hence reduction
in latency of operations. Also, as shown in Table IV, the area

TABLE IV
Area Analysis on Xilinx Virtex-7 FPGA

Logic Many-Core Many-Core Security Available
Utilization Only with Security Overhead

Slice 55,072 55,220 148 75,900
Count (0.26%)

Register 49,472 49,830 358 607,200
Count (0.72%)
LUT 142,008 142,281 273 303,600

Count (0.2%)
Distributed 11,244 11,244 - 130,800

Memory Count

TABLE V
Comparison of Security Architecture with PreviousWorks, Where S= #

Slices, R= # Registers, L= # LUTs. Both Virtex-6 and Virtex-7 slices
contain four LUTs and eight flip-flops

Platform
Kernel

Area Overhead Latency Overhead

(Cycles per
Communication)

Cotret et.al. [8], [9] Virtex-6 S×138 8
+R×123+L×293

Diguet et.al. [10] Virtex-6 S×10750 -
This Work Virtex-7 S×29 3
Many-Core +R×98+L×57

requirement for SVM kernel is very less as compared to router
architecture and hence concern for area or power bottleneck
doesn’t arise. Table IV shows area analysis and security over-
head. The security kernel overhead is due to Attack Detection
Module and peripheral combinational logic. Security kernel
adds 3 cycles to each data transfer between 16-cores (intra-
cluster), whereas 4 cycles for inter-cluster data transfer. The
latency overhead of security kernel is calculated by using a
counter, which runs at many-core frequency. The counter is
enabled when data packet reaches to the destination (desired
or replaced) core. The feature_sample contains information
which is updated at each router hop (For example as shown
in Table I). The feature_sample is transferred through separate
bus from each hop to another hop and then to attack detection
module. The area overhead analysis includes the additional bus
for feature_sample. Therefore, feature_sample will introduce
area overhead and does not affect bandwidth of the router. The
seizure detection algorithm requires 4.8 µS to execute with
the proposed security framework. SVM kernel achieves 93%
average Trojan detection accuracy for seizure detection. The
seizure detection application the data transfers are performed
at 88 Kbps, thus security overhead will not affect detection
performance. Table V compares hardware overhead of the
proposed platform with previously published papers.

VII. Conclusion
In this paper we present low-overhead security framework

using Machine Learning techniques. We assume that pro-
cessing cores and memories are secured and Trojans are
included only through router. The Trojan attack corrupts the
router packet by changing the destination address in terms of
traffic diversion, route looping or core spoofing attack. We
built “Golden Data Set” based on hardware feature analy-
sis and Trojan insertion effects to train ML model. In this
work, we experimented four commonly used Supervised Ma-



Fig. 5. Test Setup for Many-Core Platform with 64 Processing Cores on Xilinx Virtex-7 FPGA, Intra-Cluster trigger is used to attack all Level-1(R1) routers
and Inter-Cluster trigger is used to attack Level-2(R2) routers

chine Learning techniques. We chose Support Vector Machine
(SVM) to be implemented on hardware based on Accuracy
and Hardware Complexity analysis. We implemented Support
Vector Machine on hardware to detect Trojans at run-time.
To demonstrate the performance of the proposed security
framework, seizure detection algorithm is implemented on
many-core platform with 64 processing cores. To reduce
latency of Trojan detection, we implement distributed attack
detection module, where each attack detection module has 2%
area overhead. The results shows that the proposed security
framework achieves average of 93% detection accuracy for
seizure detection application and executes it in 4.8µS.
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